MAKALAH
STATISTIKA MATEMATIKA
Nama Kelompok : MUHAMAD NUROKIM
MUHAMMAD DIKY WAHYUDI
MUHAMAD ZAINAL ARIFIN
AHMAD MUNIF
ABDULLAH RABBANI AKBAR
MUHAMMAD MIFTA FAUZI
PEMERINTAH KABUPATEN LAMONGAN
DINAS PENDIDIKAN SMK NEGERI 1 KALITENGAH
PROGRAM JURUSAN TEHNIK KOMPUTER DAN JARINGAN
Jl mahkota, Dibee kalitengah lamongan 62262 telp/Fax 0322-3382240
Website : www.smkn 1 kalitengah.sch.id
KATA PENGANTAR
Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa karena dengan rahmat, karunia, serta taufik dan hidayah-Nya lah kami dapat menyelesaikan makalah STATISTIKA sebatas pengetahuan dan kemampuan yang dimiliki.
Kami sangat berharap makalah ini dapat berguna dalam rangka menambah wawasan serta pengetahuan kita mengenai pengertian, prinsip kerja, jenis-jenisSTATISTIKA, aplikasi dan perhitungan padaSTATISTIKA. Kami juga menyadari sepenuhnya bahwa di dalam tugas ini terdapat kekurangan-kekurangan dan jauh dari apa yang kami harapkan. Untuk itu, kami berharap adanya kritik, saran dan usulan demi perbaikan di masa yang akan datang, mengingat tidak ada sesuatu yang sempurna tanpa sarana yang membangun.
Semoga makalah sederhana ini dapat dipahami bagi siapapun yang membacanya. Sekiranya laporan yang telah disusun ini dapat berguna bagi kami sendiri maupun orang yang membacanya. Sebelumnya kami mohon maaf apabila terdapat kesalahan kata-kata yang kurang berkenan dan kami memohon kritik dan saran yang membangun demi perbaikan di masa depan.
Lamongan/25 oktober 2013
Penyusun
PELUANG
A.Kaidah Pencacahan, Permutasi dan Kombinasi
- Kaidah Pencacahan
Apabila peristiwa pertama dapat terjadi dalam p cara berbeda, peristiwa kedua q cara berbeda, peristiwa ketiga r cara berbeda, dan seterusnya, maka banyaknya cara yang berbeda terhadap rangkaian berurutan seperti itu adalah = p x q r x .. - Faktorial
Perkalian n bilangan asli pertama disebut n faktorial, dinotasikan dengan n!
n! = 1 x 2 x 3 x 4 x …. x (n – 1) x n
atau n! = n x (n – 1) x (n – 2) x ….. x 4 x 3 x 2 x 1 - Permutasi
Cara menempatkan n buah unsur ke dalam r tempat yang tersedia dengan urutan diperhatikan disebut permutasi r unsur dari n unsur(r ≤ n) yang dinotasikan dengan nPr atau P(n,r) atau atau Pn,r
- Banyaknya permutasi n unsur berbeda disusun n unsur(seluruhnya) adalah : P = n!
- Banyaknya Permutasi yang dapat disusun dari n anggota suatu himpunan diambil r unsur anggota pada satu saat adalah :
- Banyaknya permutasi jika ada beberapa elemen/unsur yang sama adalah :
- Banyaknya permutasi siklis adalah permutasi yang disusun secara melingkar dengan memperhatikan urutannya(arah putarannya) adalah :
P = (n – 1)!
- Banyaknya permutasi n unsur berbeda disusun n unsur(seluruhnya) adalah : P = n!
- Kombinasi
Cara menempatkan n buah unsur ke dalam r tempat yang tersedia dengan urutan tidak diperhatikan
disebut Kombinasi r unsur dari n unsur(r ≤ n) yang dinotasikan dengan nCr atau C(n,r) atau atau Cn,r
Kombinasi n unsur berbeda disusun r unsur dirumuskan :
- Binomial Newton
- Peluang Suatu Kejadian
- Peluang Suatu Kejadian
- Dalam suatu percobaan :
- Semua hasil yang mungkin disebut ruang sampel
- Setiap anggota dalam ruang sampel disebut titik sampel
- Hasil yang diharapkan disebut kejadian
- Definisi Peluang
Peluang kejadian A dinotasikan dengan P(A) adalah perbandingan banyaknya hasil kejadian A dinotasikan n(A)
terhadap banyaknya semua hasil yang mungkin dinotasikan dengan n(S) dalam suatu percobaan.
Kisaran nilai peluang suatu kejadian A adalah 0 ≤ P(A) ≤ 1.
Jika P(A) = 0 disebut kemustahilan dan P(A) = 1 disebut kepastianFrekuensi Harapan
Frekuensi Harapan kejadian A adalah banyaknya kejadian A yang diharapkan dalam beberapa kali percobaan Jika percobaan dilakukan sebanyak n kali maka frekuensi harapan kejadian A dirumuskan : Fh(A) = n x P(A)
Peluang Komplemen Suatu Kejadian
Jika Ac kejadian selain A, maka P(A)c = 1 – P(A) atau
P(A)c + P(A) = 1
P(A)c = peluang komplemen kejadian A atau peluang kejadian selain kejadian A
Kejadian Majemuk
Untuk sembarang kejadian A atau B berlaku :
Peluang dua Kejadian saling lepas(asing)
Jika maka dua kejadian tersebut merupakan dua kejadian saling lepas artinya bila terjadi A tidak mungkin terjadi B. Besarnya peluang dua kejadian saling lepas(asing) adalah :
Peluang dua kejadian saling bebas
Bila kejadian A tidak mempengaruhi terjadinya B dan sebaliknya, maka kejadian semacam ini disebut dua kejadian saling bebas
Peluang dua kejadian saling bebas dirumuskan :
Peluang dua kejadian tak bebas(bersyarat/bergantungan)
Apabila kejadian kedua(B) adalah kejadian setelah terjadinya kejadian pertama A, dinotasikan (B/A), maka dua kejadian tersebut merupakan dua kejadian tak bebas(bersyarat)
Peluang dua kejadian tak bebas dirumuskan :
CONTOH SOAL PELUANG
Peluang seorang anak terkena suatu penyakit adalah 0,15 . Jumlah anak dari 1000 anak yang diperkirakan tidak terkena penyakit itu adalah …..
a. 150 orang c. 850 orang
b. 15 orang d. 85 0rang
jawab :
D1 : A = kejadian seorang anak terkena suatu penyakit
N = 1000
D2 : fh(A) ….. ?
D3 :
P(seorang anak terkena suatu penyakit) = 0,15
P( seorang anak tidak terkena suatu penyakit ) = 1 – P(seorang anak terkena penyakit)
= 1 – 0,15
= 0,85
Fh(A) = p(A) x N
= 0,85 x 1000
= 850
Jadi , anak yang diperkirakan tidak terkena penyakit adalah 850 orang
Tiga keping mata uang logam yang sama dilempar
bersama-sama sebanyak 40 kali. Frekuensi harapan agar munculnya 2 gambar di sebelah atas adalah ...
A. 10
B. 20
C. 25
D. 15
JAWAB :
P(dua gambar satu angka) = 1/4, maka
Fh = P(A) x banyak percobaan
= 1/4 x 40
= 10 (A)
Dari 60 kali pelemparan sebuah dadu, maka frekuensi
harapan munculnya mata dadu faktor dari 6 adalah …
A. 10 kali
B. 20 kali
C. 30 kali
D. 40 kali
JAWAB :
P(faktor dari 6) = = maka
Fh = P(A) x banyak percobaan
= 2/3 x 60
= 40 (D)
Dari 900 kali percobaan lempar undi dua buah dadu
bersama-sama, frekuensi harapan muncul mata dadu berjumlah 5 adalah …
A. 300
B. 225
C. 180
D. 100
JAWAB :
P(mata dadu berjumlah 5) = 4/36 = 1/9 maka
Fh = P(A) x banyak percobaan
= 1/9 x 900
= 100 (D)
Jika sebuah dadu dilempar 36 kali, maka frekuensi
harapan muncul mata dadu bilangan prima adalah …
A. 6 kali
B. 12 kali
C. 18 kali
D. 24 kali
JAWAB :
P(bilangan prima) = ½ maka
Fh = P(A) x banyak percobaan
= ½ x 36
= 18 (C)
STATISTIKA
Statistika adalah cabang dari matematika yang mempelajari cara mengumpulkan data, menyusun data, menyajikan data, mengolah dan menganalisis data, menarik kesimpulan, dan menafsirkan parameter.
Kegiatan Statistika meliputi:
1. Mengumpulkan data
2. Menyusun data
3. Menyajikan data
4. Mengolah dan Menganalisis data
5. Menarik kesimpulan
6. Menafsirkan
1. Pengertian Datum dan Data
Di Kelas IX Anda telah mempelajari pengertian datum dan data. Agar tidak lupa pelajari uraian berikut.
Misalkan, hasil pengukuran berat badan 5 murid adalah 43 kg, 46 kg, 44 kg, 55 kg, dan 60 kg. Adapun tingkat kesehatan dari kelima murid itu adalah baik, baik, baik, buruk, dan buruk. Data pengukuran berat badan, yaitu 43 kg, 46 kg, 44 kg, 55 kg, dan 60 kg disebut fakta dalam bentuk angka. Adapun hasil pemeriksaan kesehatan, yaitu baik dan buruk disebut fakta dalam bentuk kategori. Selanjutnya, fakta tunggal dinamakan datum. Adapun kumpulan datum dinamakan data.
2. Pengertian Populasi dan Sampel
Misal, seorang peneliti ingin meneliti tinggi badan rata-rata siswa SMA di Kabupaten Tegal. Kemudian, ia kumpulkan data tentang tinggi badan seluruh siswa SMA di Kabupaten Tegal. Data tinggi badan seluruh siswa SMA di Kabupaten Tegal disebut populasi. Namun, karena ada beberapa kendala seperti keterbatasan waktu, dan biaya, maka data tinggi badan seluruh siswa SMA di Kabupaten Tegal akan sulit diperoleh. Untuk mengatasinya, dilakukan pengambilan tinggi badan dari beberapa siswa SMA di Kabupaten Tegal yang dapat mewakili keseluruhan siswa SMA di Kabupaten Tegal. Data tersebut dinamakan data dengan nilai perkiraan, sedangkan sebagian siswa SMA yang dijadikan objek penelitian disebut sampel. Agar diperoleh hasil yang berlaku secara umum maka dalam pengambilan sampel, diusahakan agar sampel dapat mewakili populasi.
Menurut sifatnya, data dibagi menjadi 2 golongan, yaitu sebagai berikut.
- Data kuantitatif adalah data yang berbentuk angka atau bilangan. Data kuantitatif terbagi atas dua bagian, yaitu data cacahan dan data ukuran.
- Data cacahan (data diskrit) adalah data yang diperoleh dengan cara membilang. Misalnya, data tentang banyak anak dalam keluarga.
- Data ukuran (data kontinu) adalah data yang diperoleh dengan cara mengukur. Misalnya, data tentang ukuran tinggi badan murid.
- Data kualitatif adalah data yang bukan berbentuk bilangan.
Data kualitatif berupa ciri, sifat, atau gambaran dari kualitas objek. Sebagai contoh, data mengenai kualitas pelayanan, yaitu baik, sedang, dan kurang.
Cara untuk mengumpulkan data, antara lain adalah melakukan
wawancara, mengisi lembar pertanyaan (questionery), melakukan pengamatan (observasi), atau menggunakan data yang sudah ada, misalnya rataan hitung nilai rapor.
Menyajikan Data dalam Bentuk Diagram
1. Diagram Garis
Penyajian data statistik dengan menggunakan diagram berbentuk garis lurus disebut diagram garis lurus atau diagram garis. Diagram garis biasanya digunakan untuk menyajikan data statistik yang diperoleh berdasarkan pengamatan dari waktu ke waktu secara berurutan.
Contoh:
Berikut simulasi diagram garis, kamu dapat mengubah-ubah diagram garis yang ada:
2. Diagram Batang
Diagram batang umumnya digunakan untuk menggambarkan perkembangan nilai suatu objek penelitian dalam kurun waktu tertentu. Diagram batang menunjukkan keterangan-keterangan dengan batang-batang tegak atau mendatar dan sama lebar dengan batang-batang terpisah Berikut simulasi diagram batang, kamu dapat mengubah-ubah diagram batang yang ada
3. Diagram Lingkaran
Diagram lingkaran adalah penyajian data statistik dengan menggunakan gambar yang berbentuk lingkaran. Bagian-bagian dari daerah lingkaran menunjukkan bagian-bagian atau persen dari keseluruhan. Untuk membuat diagram lingkaran, terlebih dahulu ditentukan besarnya persentase tiap objek terhadap keseluruhan data dan besarnya sudut pusat sektor lingkaran. Perhatikan contoh berikut ini. Berikut simulasi diagram lingkaran, kamu dapat mengubah-ubah diagram lingkaran yang ada
Penyajian Data dalam Bentuk Tabel Distribusi Histogram, Poligon dan Ogive
1. Distribusi Frekuensi Tunggal
Data tunggal seringkali dinyatakan dalam bentuk daftar bilangan, namun kadangkala dinyatakan dalam bentuk tabel distribusi frekuensi. Tabel distribusi frekuensi tunggal merupakan cara untuk menyusun data yang relatif sedikit.
2. Distribusi Frekuensi Kelompok
Data yang berukuran besar (n > 30) lebih tepat disajikan dalam tabel distribusi frekuensi kelompok, yaitu cara penyajian data yang datanya disusun dalam kelas-kelas tertentu. Langkah-langkah penyusunan tabel distribusi frekuensi adalah sebagai berikut.
- Langkah ke-1 menentukan Jangkauan (J) = Xmax - Xmin
- Langkah ke-2 menentukan banyak interval (K) dengan rumus "Sturgess" yaitu: K= 1 + 3,3 log n dengan n adalah banyak data. Banyak kelas harus merupakan bilangan bulat positif hasil pembulatan ke bawah.
- Langkah ke-3 menentukan panjang interval kelas (I) dengan menggunakan rumus:
J
I = ––––
K
- Langkah ke-4 menentukan batas-batas kelas. Data terkecil harus merupakan batas bawah interval kelas pertama atau data terbesar adalah batas atas interval kelas terakhir.
- Langkah ke-5 memasukkan data ke dalam kelas-kelas yang sesuai dan menentukan nilai frekuensi setiap kelas dengan sistem turus.
3. Histogram
Dari suatu data yang diperoleh dapat disusun dalam tabel distribusi frekuensi dan disajikan dalam bentuk diagram yang disebut histogram. Jika pada diagram batang, gambar batang-batangnya terpisah maka pada histogram gambar batang-batangnya berimpit.
4. Poligon
Apabila pada titik-titik tengah dari histogram dihubungkan dengan garis dan batang-batangnya dihapus, maka akan diperoleh poligon frekuensi. Berdasarkan contoh di atas dapat dibuat poligon frekuensinya seperti gambar berikut ini.
Berikut simulasi histogram dan poligon
5. Distribusi Frekuensi Kumulatif
Daftar distribusi kumulatif ada dua macam, yaitu sebagai berikut.
a. Daftar distribusi kumulatif kurang dari (menggunakan tepi atas).
b. Daftar distribusi kumulatif lebih dari (menggunakan tepi bawah).
Untuk lebih jelasnya, perhatikan contoh data berikut ini.
6. Ogive (Ogif)
Grafik yang menunjukkan frekuensi kumulatif kurang dari atau frekuensi kumulatif lebih dari disebut poligon kumulatif. Poligon kumulatif dibuat mulus, yang hasilnya disebut ogif. Ada dua macam ogif, yaitu sebagai berikut.
a. Ogif frekuensi kumulatif kurang dari disebut ogif positif.
b. Ogif frekuensi kumulatif lebih dari disebut ogif negatif.
1. Rumus Rataan Hitung (Mean)
Rata-rata hitung dihitung dengan cara membagi jumlah nilai data dengan banyaknya data. Rata-rata hitung bisa juga disebut mean.
a) Rumus Rataan Hitung dari Data Tunggal
b) Rumus Rataan Hitung Untuk Data yang Disajikan Dalam Distribusi Frekuensi
Dengan : fixi = frekuensi untuk nilai xi yang bersesuaian
xi = data ke-i
c) Rumus Rataan Hitung Gabungan
2. Rumus Modus
a. Data yang belum dikelompokkan
Modus dari data yang belum dikelompokkan adalah ukuran yang memiliki frekuensi tertinggi. Modus dilambangkan mo.
b. Data yang telah dikelompokkan
Rumus Modus dari data yang telah dikelompokkan dihitung dengan rumus:
Dengan : Mo = Modus
L = Tepi bawah kelas yang memiliki frekuensi tertinggi (kelas modus) i = Interval kelas
b1 = Frekuensi kelas modus dikurangi frekuensi kelas interval terdekat sebelumnya
b2 = frekuensi kelas modus dikurangi frekuensi kelas interval terdekat sesudahnya
3. Rumus Median (Nilai Tengah)
a) Data yang belum dikelompokkan
Untuk mencari median, data harus dikelompokan terlebih dahulu dari yang terkecil sampai yang terbesar.
b) Data yang Dikelompokkan
Dengan : Qj = Kuartil ke-j
j = 1, 2, 3
i = Interval kelas
Lj = Tepi bawah kelas Qj
fk = Frekuensi kumulatif sebelum kelas Qj
f = Frekuensi kelas Qj
n = Banyak data
4. Rumus Jangkauan ( J )
Selisih antara nilai data terbesar dengan nilai data terkecil.
Rumus Simpangan Quartil (Qd)
Rumus Simpangan baku ( S )
Rumus Simpangan rata – rata (SR)
Rumus Ragam (R)
Contoh soal statistika
Tabel 1.1 dibawah ini:
Jawab :
KATA PENUTUP
Demikian yang dapat kami paparkan mengenai materi yang menjadi pokok bahasan dalam makalah ini, tentunya masih banyak kekurangan dan kelemahannya, kerena terbatasnya pengetahuan dan kurangnya rujukan atau referensi yang ada hubungannya dengan judul makalah ini.
Penulis banyak berharap para pembaca yang budiman dusi memberikan kritik dan saran yang membangun kepada penulis demi sempurnanya makalah ini dan dan penulisan makalah di kesempatan-kesempatan berikutnya. Semoga makalah ini berguna bagi penulis pada khususnya juga para pembaca yang budiman pada umumnya.
Lamongan , Oktober, 2013
penyusun